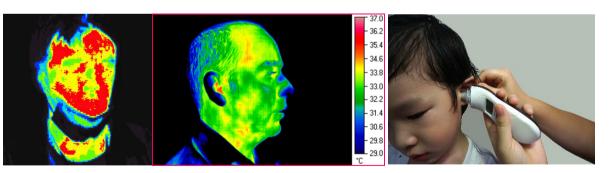


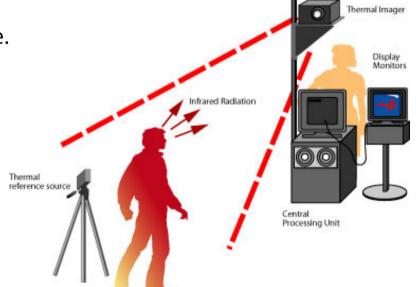
Thermal imager

- Thermal imager measures surface temperature and displays the temperature profile of objects.
- Very wide industry applications
 - Building sustainability
 - Energy sustainability
 - Thermal survey of electrical switch board
 - Firefighting
 - Biomedical
 - Civil surveillance



Thermal imager for <u>fever screening</u>

- Thermal image provides profile of facial skin temperature of a person.
- Temperature above a threshold, highlighted by a distinct colour, indicates an elevated temperature, i.e., <u>potential</u> febrile condition.
- People having elevated facial skin temperature will be further checked by using a clinical thermometer for confirmation.



Thermal imager for <u>fever screening</u>

- Threshold is corrected for the difference between skin and body temperatures.
- 'Go or No-go' system.
- False positive & false negative.

Basic considerations when choosing a thermal imager for <u>fever screening</u>

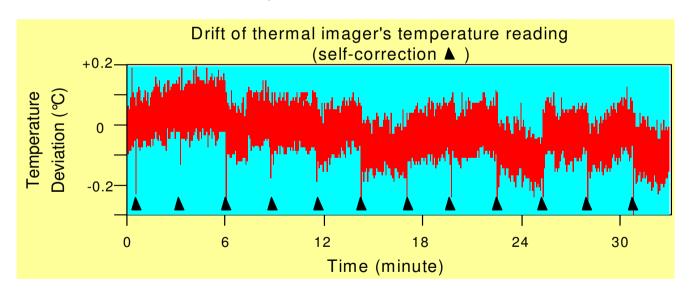
- The number of detector pixels ≥ 320 x 240
 - ≥ 240 x 180 for facial area single profile.
- Temperature measurement range (or equivalent temperature measurement range) 30 °C to 40 °C.
- Temperature resolution (or equivalent temperature resolution) ≤ 0.1 °C.
- Isotherm colour display mode with resolution ≤ 0.1 °C.
- Near real-time processing.
- Emissivity adjustment function.

Basic considerations when choosing a thermal imager for <u>fever screening</u>

- Suitable focusing distance, typically 0.5 m to 6 m.
- Data logging function.
- Self-check/Non-Uniformity Correction (NUC) interval selection possibility.
- Integration time for temperature readings (may be different from that of the images).
- Indication of pixel locations.
- Minimum allowable pixel size for temperature readings.

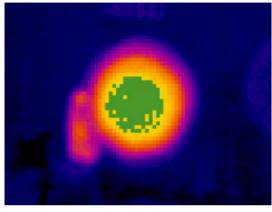
Critical parameters with suggested specifications

- Drift between self-corrections ≤ 0.3 °C.
- Minimum Detectable Temperature Difference (MDTD) ≤ 0.4 °C.
- Non-Uniformity ≤ 0.3 °C.
- Distance effect ≤ 0.3 °C.
- Calibration of threshold temperature.
- Threshold temperature stability ≤ 0.3 °C.



Evaluation of drift between self-corrections

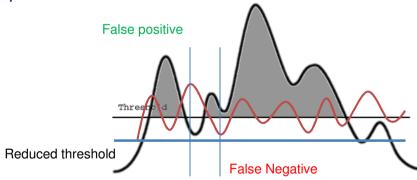
- Drift between self-corrections maximum permissible drift is 0.3 °C with interval of 3 minutes.
- It affects all other critical parameters.





Evaluation of MDTD

- Minimum detectable temperature difference (MDTD).
- Maximum permissible difference is 0.4 °C.
- MDTD is defined as the temperature difference corresponding to 5% to 95% target area colour change.

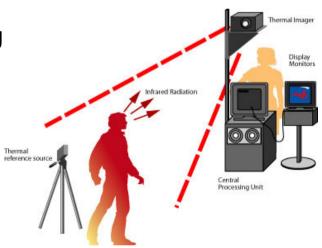


Evaluation of MDTD

- Reflects ability of the system to detect small temperature differences for sufficiently large target.
- The smaller the better.
- MDTD and false negative and false positive - optimal threshold value.

Evaluation of uniformity

- Uniformity: Maximum permissible temperature difference (or equivalent temperature difference) at various locations distributed across the target plane or <u>workable target plane</u> is 0.3 °C.
- The smaller the better.
- Poor uniformity limits the usage to the central area of the display.



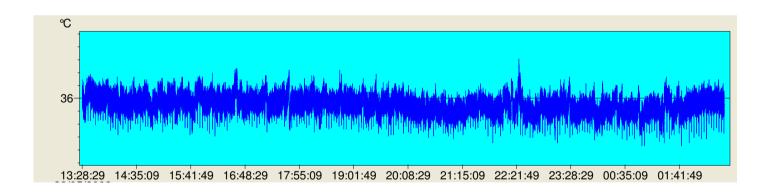
Evaluation of distance effect

- Distance effect maximum permissible difference is
 0.3 °C with ± 0.5 m from the nominal target distance.
 - Selection of working distance
 - Safety concern of the operator
 - Quality of camera
 - It's still the best if a person under screening stands still in front the camera at the target distance

Evaluation of threshold temperature and its stability

- Threshold temperature traceability to ITS-90.
 - Setting a proper threshold temperature study on correlation between the skin temperature and body core temperature is beyond the scope of technical evaluation of thermal imagers.

- Stability of threshold temperature.
 - Good threshold temperature stability ensure reliability of screening.
- Maximum variation of threshold temperature in certain period of time provides an indication of threshold stability.



Evaluation of stability of threshold temperature

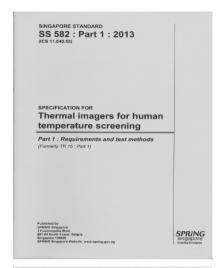
- Stability of threshold temperature.
- Maximum variation of temperature reading in at least 24-h period is 0.3 °C.

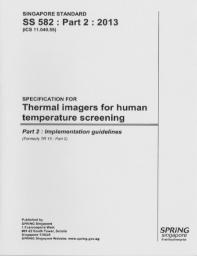
Observations

- Failure to meet non-uniformity and MDTD requirements are most common.
- Threshold stability data logging was not available in many thermal imagers.
- Wrong emissivity compensation algorithm is quite common.
- Thermal imagers should be evaluated before deployment for fever screening.

Evaluation results and Singapore Standard (SS) "Thermal Imagers for Human Temperature Screening" (SS582)

- A Singapore Technical Reference (TR15 Part 1: 2003; Pert 2: 2004) and its corresponding Singapore Standard SS582 Part 1/2: 2020) "Thermal Imagers for Human Temperature Screening" were developed based on the critical parameters and evaluation results.
- The TR15 was first of its kind worldwide and provided bases for development of the following two ISO/IEC standards:
 - **IEC 80601-2-59: 2008** Medical electrical equipment Part 2-59: Particular requirements for basic safety and essential performance of screening thermographs for human febrile temperature screening.
 - **ISO/TR 13154: 2009** Medical electrical equipment Deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph.





Singapore Standard (SS) 582

- The SS582 is jointly developed by the stakeholders, thermal imager suppliers and users in Singapore
- To help fighting COVID-19, a new edition, the SS582 Part 1/2: 2020, will be published soon
- It will be freely accessible once published
- Watch out at https://www.singaporestandardseshop.sg/ for updates
- Share your feedback with us!

17

THANK YOU

www.a-star.edu.sg/nmc